Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Forensic Medicine ; (6): 33-37, 2021.
Article in English | WPRIM | ID: wpr-985190

ABSTRACT

Objective To establish an infrared spectroscopic method for the rapid qualitative and quantitative analysis of caffeine and sodium benzoate in Annaka samples. Methods Qualitative and quantitative modeling samples were prepared by mixing high-purity caffeine and sodium benzoate. The characteristic absorption peaks of caffeine and sodium benzoate in Annaka samples were determined by analyzing the infrared spectra of the mixed samples. The quantitative model of infrared spectra was established by partial least squares (PLS). Results By analyzing the infrared spectra of 17 mixed samples of caffeine and sodium benzoate (the purity of caffeine ranges from 10% to 80%), the characteristic absorption peaks for caffeine were determined to be 1 698, 1 650, 1 237, 972, 743, and 609 cm-1. The characteristic absorption peaks for sodium benzoate were 1 596, 1 548, 1 406, 845, 708 and 679 cm-1. When the detection of all characteristic absorption peaks was the positive identification criteria, the positive detection rate of caffeine and sodium benzoate in 48 seized Annaka samples was 100%. The linear range of PLS quantitative model for caffeine was 10%-80%, the coefficient of determination ( R2) was 99.9%, the root mean square error of cross validation (RMSECV) was 0.68%, and the root mean square error of prediction (RMSEP) was 0.91%; the linear range of PLS quantitative model for sodium benzoate was 20%-90%, the R2 was 99.9%, the RMSECV was 0.91% and the RMSEP was 1.11%. The results of paired sample t test showed that the differences between the results of high performance liquid chromatography method and infrared spectroscopy method had no statistical significance. The established infrared quantitative method was used to analyze 48 seized Annaka samples, the purity of caffeine was 27.6%-63.1%, and that of sodium benzoate was 36.9%-72.3%. Conclusion The rapid qualitative and quantitative analysis of caffeine and sodium benzoate in Annaka samples by infrared spectroscopy method could improve identification efficiency and reduce determination cost.


Subject(s)
Caffeine , Chromatography, High Pressure Liquid , Least-Squares Analysis , Sodium Benzoate , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL